Electrochemical etching of ultra-sharp scanning probe microscopy tips

Relevant publications:

  1. Two-step controllable electrochemical etching of tungsten scanning probe microscopy tips Yasser Khan, Hisham Al-Falih, Yaping Zhang, Tien Khee Ng, and Boon S Ooi Review of Scientific Instruments, 2012 83, 6.

    Dynamic electrochemical etching technique is optimized to produce tungsten tips with controllable shape and radius of curvature of less than 10 nm. Nascent features such as “dynamic electrochemical etching” and reverse biasing after “drop-off” are utilized, and “two-step dynamic electrochemical etching” is introduced to produce extremely sharp tips with controllable aspect ratio. Electronic current shut-off time for conventional dc “drop-off” technique is reduced to ∼36 ns using high speed analog electronics. Undesirable variability in tip shape, which is innate to static dc electrochemical etching, is mitigated with novel “dynamic electrochemical etching.” Overall, we present a facile and robust approach, whereby using a novel etchant level adjustment mechanism, 30° variability in cone angle and 1.5 mm controllability in cone length were achieved, while routinely producing ultra-sharp probes.

    @article{khan2012two, title = {Two-step controllable electrochemical etching of tungsten scanning probe microscopy tips}, author = {Khan, Yasser and Al-Falih, Hisham and Zhang, Yaping and Ng, Tien Khee and Ooi, Boon S}, journal = {Review of Scientific Instruments}, volume = {83}, number = {6}, pages = {063708}, year = {2012}, publisher = {AIP}, url = {http://dx.doi.org/10.1063/1.4730045}, doi = {10.1063/1.4730045}, thumbnail = {khan2012two.png}, pdf = {khan2012two.pdf} }


Last modified: 2017-07-22